X-ray Absorption Spectroscopy

Introduction to XAS

• XAS spectral shape

• multiplet calculations

X-ray Absorption Spectroscopy

 Photo-electric (X-ray annihilation)

• Elastic X-ray scattering

 Inelastic X-ray scattering

X-ray Absorption Spectroscopy

Label	Orbital	eV	
Κ	<u>1s</u>	6539	
L _I	<u>2s</u>	769	s harp p rincipal d iffuse f undamental
L _{II}	<u>2p_{1/2}</u>	650	
L _{III}	<u>2p_{3/2}</u>	639	
M _I	<u>3s</u>	82	
M _{II}	<u>3p_{1/2}</u>	47	J. Chem. Educ. 84, 757 (2007,
M _{III}	<u>3p_{3/2}</u>	47	

BarKLa

The Nobel Prize in Physics 1917 was awarded to Charles Glover Barkla "for his discovery of the characteristic Röntgen radiation of the elements."

- Element specific
- Sensitive to low concentrations
- Applicable under extreme conditions

- SPACE: Combination with x-ray microscopy
- TIME: femtosecond XAS
- RESONANCE: RIXS, RPES, R diffraction

XAS: spectral shape

$$I_{XAS} \sim \Sigma_f \left| \left\langle \Phi_f \left| \hat{e} \cdot r \right| \Phi_i \right\rangle \right|^2 \delta_{E_f - E_i - \hbar \omega}$$

XAS: spectral shape (oxygen 1s)

 $I_{XAS} \sim M^2 \rho \approx \rho_{site,symmetry}$

XAS: spectral shape (O 1s)

XAS: spectral shape (O 1s)

Phys. Rev. B.40, 5715 (1989)

XAS: spectral shape (O 1s)

Phys. Rev. B.40, 5715 (1989); 48, 2074 (1993)

XAS: spectral shape

Final State Rule: Spectral shape of XAS looks like final state DOS

Phys. Rev. B. 41, 11899 (1991)

XAS: spectral shape

XAS codes:

- <u>Multiple scattering:</u> FEFF, FDMNES, etc.
- <u>Band structure:</u> WIEN2K, Quantumespresso, etc.
- <u>Real-space DFT:</u>
 ADF,
 ORCA, etc.

2p XAS of transition metal ions

[[]Phys. Rev. B. 42, 5459 (1990)]

XAS: spectral shape

[[]Phys. Rev. B. 42, 5459 (1990)]

XAS: spectral shape (of d and f systems)

CHARGE TRANSFER MULTIPLETS

Used for the analysis of XAS, EELS,

Photoemission, Auger, XES involving d and f-shells

ATOMIC PHYSICS \downarrow GROUP THEORY \downarrow MODEL HAMILTONIANS

Frank de Groot Akio Kotani

CRC Press

ATOMIC MULTIPLETS

$H\Psi = E\Psi$

- Kinetic Energy
- Nuclear Energy
- Electron-electron interaction
- Spin-orbit coupling

ATOMIC MULTIPLETS

$H\Psi = E\Psi$

$H = \sum_{i} \frac{p_i^2}{2m} + \sum_{i} \frac{-Ze^2}{r_i} + \sum_{i} \frac{e^2}{r_{ij}} + \sum_{i} \zeta(r_i) l_i \cdot s_i$ pairs N

- Kinetic Energy Nuclear Energy
- Electron-electron interaction
- Spin-orbit coupling

ATOMIC MULTIPLETS 3d¹

5 orbitals (each spin-up or spin-down) >> total 10 states No electron-electron interaction: all states have the same energy Quantum numbers: L=2 and S= $\frac{1}{2}$, notation as term symbol: $^{2S+1}L=^{2}D$

ATOMIC MULTIPLETS 3d¹

Spin-orbit coupling couples L and S quantum numbers to a total quantum number J J_{max} = L+S = 5/2, J_{min} = |L-S|= 3/2, Integer steps of J. Two term symbols: L=2, S=1/2, and J = 5/2 >> notation as term symbol: ${}^{2S+1}L_J = {}^{2}D_{5/2}$ L=2, S=1/2, and J = 3/2 >> notation as term symbol: ${}^{2S+1}L_J = {}^{2}D_{3/2}$

ATOMIC MULTIPLETS 3d¹

https://drive.google.com/file/d/1a-EOyCMw1AOGxITnCVGfRQapi7w0KXCU/ view?usp=sharing

ATOMIC MULTIPLETS 3d²

5 spin-up orbitals give 4 + 3 + 2 + 1 = 10 paired $3d^2$ states 5 spin-down orbitals give 10 paired down-down $3d^2$ states There are 5x5 = 25 up-down states In total 10+10+25 = 45 states

Can also be calculated as 10 x 9 / 2 = 45 states

Electron-electron interaction is different for different orbital combinations

There will be a number of different states with different energies.

Analysis shows that the states are ¹S, ³P, ¹D, ³F and ¹G

https://drive.google.com/file/d/1a-EOyCMw1AOGxITnCVGfRQapi7w0KXCU/ view?usp=sharing

ATOMIC MULTIPLETS 3d²

Ground state:

Given by Hunds rules

- 1. max S
- 2. max L
- 3. min J (if less than half full)

ATOMIC MULTIPLETS 3d⁸

Ground state:

Given by Hunds rules

- 1. max S
- 2. max L
- 3. max J (if more than half full)

X-ray absorption from 3d⁸ to 2p⁵3d⁹

X-ray absorption from 3d⁸ to 2p⁵3d⁹

2p XAS of NiO with atomic multiplets

3d XAS of rare earths

- 4f electrons are localized
- No effect of surroundings (crystal field < lifetime broadening)</p>
- 3d XAS is self screened > no charge transfer effect
- Initial state
- electron-electron interaction.
- Valence spin-orbit coupling
- Final state
- + core hole valence hole 'multiplet' interaction.
- + core hole spin-orbit coupling

PHYSICAL REVIEW B

VOLUME 32, NUMBER 8

15 OCTOBER 1985

3d x-ray-absorption lines and the $3d^94f^{n+1}$ multiplets of the lanthanides

B. T. Thole,* G. van der Laan,* and J. C. Fuggle

Laboratory for Physical Chemistry, University of Nijmegen, Toernooiveld, NL-6525 ED Nijmegen, The Netherlands

G. A. Sawatzky

Institute for Physical Chemistry, University of Groningen, Nijenborgh 16, NL-9747AG Groningen, The Netherlands

3d XAS of rare earths

Nd³⁺ 4f³ system: ground state is ⁴I_{9/2}

2p XAS of NiO with atomic multiplets

2p XAS of 3d transition metal oxides

- 3d electrons are less localized
- Effect of surroundings (crystal field effect)
- 3d XAS is self screened > weak charge transfer effect

Initial state

- electron-electron interaction.
- valence spin-orbit coupling
- crystal field effect

Final state

- core hole valence hole 'multiplet' interaction.
- core hole spin-orbit coupling
- crystal field effect

crystal field effect

2p XAS of ScF3 with crystal field multiplets

PHYS. Rev. B. 41, 928 (1990) [google drive]

X-ray absorption from 3d⁰ to 2p⁵3d¹

3d⁰

X-ray absorption from 3d⁰ to 2p⁵3d¹

CRYSTAL FIELD EFFECT

CRYSTAL FIELD EFFECT

Branching rules: Same rules for any quantum number

S, L or J

X-ray absorption from 3d⁰ to 2p⁵3d¹

X-ray absorption from 3d⁰ to 2p⁵3d¹

2p XAS of ScF3 with crystal field multiplets

2p XAS of NiO

States of 3dN transition metal ions

States of 3d^N transition metal ions

Symmetry labels are labels; they are (almost) never exact.

States of 3d^N transition metal ions

J. Synchrotron Rad. (2016). 23, 1264 (2016) [google drive]

States of 3dN transition metal ions

J. Synchrotron Rad. (2016). 23, 1264 (2016) [google drive]

2p XAS of NiO

Calculate 2p XAS around 0.0 and shift to experiment

Crystal Field: High-spin or low-spin

Large 10Dq will change the ground state to low-spin

Crystal Field: Effect of 3d spin-orbit coupling

Spin-orbit coupling important for T_1 and T_2 symmetry ground states (3d¹, 3d², 3d⁶, 3d⁷), for example Fe²⁺ and Co²⁺

Crystal Field: Effect of 3d spin-orbit coupling

Multiplet calculations

Multiplet calculations

Main screening mechanism in XAS of oxides: Ligand-to-metal charge transfer

Charge transfer energy Δ is important for XAS

Hubbard U is NOT important for XAS spectral shape

transition metal oxides

- Ground state: 3d⁸ + 3d⁹L
- Energy of $3d^9L$: Charge transfer energy Δ

Ground State

$$H_{mix} = \begin{bmatrix} 0 & \mathrm{T}_j \\ \mathrm{T}_j & \Delta \end{bmatrix}.$$

 $\Delta = 2$ and T=1 E_{1.2} = $\frac{1}{2} [2 \pm \sqrt{2^2 + 4}] = 1 \pm \sqrt{2}$

NiO: Ground state: $3d^8 + 3d^9L$ Energy of $3d^9L$: Charge transfer energy Δ

 $\alpha 3d^8 + \beta 3d^9 \underline{L} \quad \alpha' \underline{c} 3d^9 + \beta' \underline{c} 3d^{10} \underline{L}$

Intensity bonding combination: $[\alpha \alpha' + \beta \beta']^2$ $\alpha \approx \alpha'$ $\approx (\alpha^{2} + \beta^{2})^2 = 1$

Intensity anti-bonding combination: $[\alpha \beta' - \beta \alpha']^2$

 $\alpha \approx \alpha'$

 $\approx (\alpha\beta - \beta\alpha)^2 = 0$

Neutral experiments are self-screened XAS, optical, EPR, EELS, RIXS

>> small screening satellites
>> crystal field theory can be used

Ionising experiments are not self-screened XPS, Auger, (metal K edge XAS) >> large screening > large satellites >> crystal field theory can not be used

Charge transfer effects in XAS and XPS

- Transition metal oxide: Ground state: 3d⁵ + 3d⁶L
- Energy of $3d^6L$: Charge transfer energy Δ

NiO: Ground state: $3d^8 + 3d^9L$ Energy of $3d^9L$: Charge transfer energy Δ

Tanabe-Sugano diagrams with charge transfer

Charge transfer effects in XAS

Chem. Phys. Lett. 297, 321 (1998)

LMCT and MLCT: π - bonding

Fe^{III}: Ground state: 3d⁵ + 3d⁶

with Ed Solomon (Stanford) JACS 125, 12894 (2003), JACS 128, 10442 (2006), JACS 129, 113 (2007)

LMCT and MLCT: π - bonding

Fe^{III}: Ground state: $3d^5 + 3d^6L + 3d^4L$

with Ed Solomon (Stanford) JACS 125, 12894 (2003), JACS 128, 10442 (2006), JACS 129, 113 (2007)

LMCT and MLCT: π - bonding

Multiplet calculations

Calculated for an atom/ion

- Valence and core spin-orbit coupling
- Core and valence electron-electron interaction.

Comparison with experiment

- Core hole potential and lifetime
- Local symmetry (crystal field)
- Spin-spin interactions (molecular field)
- Core hole screening effects (charge transfer)

First Principle Multiplet calculations

Calculated for an atom/ion

- Valence and core spin-orbit coupling
- Core and valence electron-electron interaction.

Comparison with experiment

- Core hole potential and lifetime
- Local symmetry (crystal field)
- Spin-spin interactions (molecular field)
- Core hole screening effects (charge transfer)

2p XAS first-principle codes

SOLIDS

- Band structure multiplet (Haverkort, Green, Hariki)
- Cluster DFT multiplet (Ikeno, Ramanantoanina, Delley)
 MOLECULES
- Restricted Active Space CI (Odelius, Kuhn, Lundberg)
- Restricted Open-shell CI + Multi Reference (Neese)

TDDFT/BSE

- Time-Dependent DFT (Joly)
- Bethe-Salpeter (Rehr, Shirley)
- Multi-channel Multiple-scattering (Kruger)